
Geoguessr AI

Ashton Thomas*
University of Michigan

aethom@umich.edu

Claire O’Neill*
University of Michigan
cconeill@umich.edu

Emre Hayir*
University of Michigan
ebhayir@umich.edu

Sushrita Rakshit*
University of Michigan
sushrita@umich.edu

Abstract

This study explores the intersection of navigation, ob-
ject detection, and geographic recognition in the realm of
Computer Vision. Current Computer Vision has a large
focus on refining techniques in recognizing both everyday
objects and geographical landmarks. This research paper
introduces Geoguessr AI, a model designed to identify lo-
cations within the United States from images, irrespective
of lighting or seasonal variations. By leveraging a large
dataset of labeled locations with many time and seasonal
variations, the project explores the efficacy of extending pre-
trained models, such as ResNet-50, through layer augmen-
tation and activation functions.

1. Introduction

Navigation and object detection are prominent issues
within the Computer Vision field that have recently emerged
and are continually being refined. This includes arbitrary
day-to-day objects and also landmarks and geographical lo-
cations. However, considering the issues associated with
object recognition, we wanted to extend our understanding
of geographic recognition. Particularly, if our model were
to be fed in a large dataset of labeled locations, would it be
able to recognize where in the United States it was located,
regardless of seasonal and lighting presence within the im-
ages? This introduces our model Geoguessr AI, which
stems from our group’s love for looking at geographical ar-
chitecture images and guessing where they came from.

For the sake of consistency and better predictions, we
wanted to narrow the scope of our project to the United
States, which would make data aggregation easier since the
United States has a wide and diverse landscape. This project
is important as it helps us understand how pre-trained mod-

els such as ResNet-50 function and how we can expand
upon them by adding layers and activation functions on top
of frozen and unfrozen layers to produce correct responses.

2. Background
2.1. Model Considerations

Training a model to produce approximate coordinates
given a street-view image is a challenging machine-learning
task. Previous approaches to this problem focused on iden-
tifying locations based on landmarks in images [5]. A
promising model from 2016 called PlaNet tackled this prob-
lem by subdividing the surface of the earth into geographi-
cal cells [5]. This allowed researchers to treat the the geo-
location task as a classification task. The resulting model
out performed similar models such as IM2GPS and Sky-
line2GPS on geolocation tasks [6, 7]. From this research,
we decided to begin to approach this problem as a classi-
fication task, where the US would be split into 150 boxes,
specifically 15x10 evenly spaced grids. Our model would
have to predict which box the image originated from.

It is important to recognize that a model’s capabilities
are limited to the data it is trained on. The PlaNet model
pulled over 150 million images from the internet with min-
imal filtering. This led to improved performance on the ge-
olocation task, however, we knew that we did not have the
resources to pull millions of images [5]. For this reason,
we decided to use a pre-trained model instead of training a
model from scratch. After recent successes in transfer learn-
ing on a variety of tasks, we decided this approach would
allow us to train a model with limited data. We were able
to collect 61,000 images from Mapillary API that we could
use to fine-tune the pre-trained model.

To tackle this problem, we had to choose a model
we could fine-tune that has previous knowledge and large
amounts of data we could extrapolate. When considering



Figure 1. A graph displaying the dispersion of our data fetched
from the Mapillary API.

models, we wanted to prioritize models that performed well
on visual recognition tasks, this led us to VGGNet and
ResNet. Initially, we considered using a VGGNet model
because of its capabilities fitting complex data due to the
model’s depth [3]. However, we found the model to be
problematic when attempting to work with its weights, as
a result, we decided to try ResNet-50, a less complex model
[4]. We found this model much easier to work with, while
still performing well on its benchmark tasks [4]. These are
all important background factors that were considered be-
fore refining our experiments and project methodology.

2.2. Final Model Selection - Pretrain Task

ResNet-50 worked amazingly since it can perform well
with few layers. ResNet-50 is trained with trillions of data
points and hundreds to thousands of hours of computing
power, which would help since we lacked resources. We
did additional research on transfer learning and found that if
we freeze layers within ResNet-50, we could keep its robust
recognition skills while adding our data to the model. We
also explored ResNet-50’s complete architecture and found
code demonstrating how to freeze and unfreeze different
layers within the pre-trained model. We employed all this
information in our methodology and experimentation sec-
tions. Full visual information can be seen within Figure 2.

Each layer within ResNet-50 was responsible for differ-
ent specialties within the input images. For example, the in-
termediary layers have 3x3 convolutional layers and the fi-
nal output layer is a 1,000 way fully-connected layer utiliz-
ing the SoftMax activation function [2]. By reading through
in-depth about the ResNet-50 architecture, we found that
the final few layers were key in the model’s objective, which
was object recognition [2]. Going forth in the methodology

Figure 2. Detailed Architecture for ResNet-50’s convolution lay-
ers, fully-connected layers, and activation functions. [1]



section, we would explore the differences in freezing all the
layers and unfreezing the final few layers in order to make it
geographically compatible instead of just for object detec-
tion.

3. Methodology
3.1. Experiment 1

We decided to use a pre-trained model and perform trans-
fer learning and fine-tuning. The first portion of this process
was to find adequate data for our learning objective. We
scraped a free map-based API called Mapillary. We had set
the data scraper to grab images evenly distributed from each
of 150 different regions within the United States, which we
defined by going from -66 to -126 degrees longitude and
24 to 50 degrees latitude. Mapillary would attempt to grab
these images evenly and return an image, coordinate pair.
We aggregated 61,538 images with coordinates, which we
used to create training and evaluation sets. We used 80% of
this data for training and 20% for evaluating our model.

For this experimental stage, we chose a learning rate of
10e-5 with a batch size of 1 and a regularizer of 10e-3. The
loss function was our custom Haversine distance loss and
we set the number of epochs to 3.

Initially, we intended to train our model by creating
“boxes” for each coordinate to fall into. The output from
the model would be a vector sized 150x1 where each box n
represents the normalized probability of the image belong-
ing to such box n. To determine the final point our model
would output we’d multiply the probability of each box by
the coordinates of the center of the box, this output would
be latitude/longitude of the weighted average of the boxes.
To measure our accuracy we created a custom loss func-
tion that would penalize the model based on the Haversine
distance between our predicted point and the correct point
[8]. Particularly, if the model predicted boxes far from the
ground truth point, the penalty would be applied as the dis-
tance between the weighted center of the boxes (the predic-
tion) and the actual location. For reference, the Haversine
distance between two points (ϕ1, λ1) and (ϕ2, λ2) on the
Earth’s surface, where ϕ represents latitude and λ represents
longitude, is given by:

d = 2r arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
where:

∆ϕ = ϕ2 − ϕ1

∆λ = λ2 − λ1

r = radius of the Earth

This approach seemed promising, however, it led to
many challenges. We were troubled with how we might

perform batching. We could only enable our model to
train with a batch size of 1. This was inconvenient as we
wouldn’t be able to generalize properly. When we plot-
ted the loss for our training with batch size 1, we saw a
drastically oscillating loss graph with no consistent trend,
of which was also not monotonically decreasing, indicating
that convergence criteria was not being met and the model
was not learning adequately. This was the first method we
attempted, which failed. To rectify this, we decided to alter
our approach.

3.2. Experiment 2

After the above experiment, we decided to make a model
that would only give two outputs: the latitude and the lon-
gitude. We would also use the loss function Mean Squared
Error to allow for generalization in batching instead of com-
plicating our Haversine distance loss. The inputs for train-
ing were the latitude and longitude pairs from the images
and the output was the model’s prediction of the image (lat-
itude and longitude values). For this experimental stage,
we chose a learning rate of 10e-5 with a batch size of 50
and a regularizer of 10e-3. We decided to keep ResNet’s
base knowledge by freezing all the layers of the pre-trained
model and conducting a one-shot performance. However,
despite training with our data, we saw a perfectly linear
representation of the model, going from Seattle in the north-
west to Florida in the Southeast. For reference, this result
can be seen in Figure 3.

Figure 3. The output of the experiment and methodology in 3.2.
As can be seen, there is a very linear, somewhat noisy represen-
tation of predictions that are distributed along the Northwest to
Southeast diagonal of the United States.

We figured this would be due to the linear predictions
from the fully connected layer’s output. As a result, we de-
cided to add new activation functions and fully connected



layers outside of ResNet’s final fully connected layers. We
added 3 new fully connected layers with intermediate ReLU
activations, including after the final fully-conected layer.
From this, we saw a significant boost in performance. We
saw drastic variability in predictions afterward and there
was still slight linearity. This makes sense as the model
picked up on the United States shape and saw that there was
more dense data collection towards corners of the country.
This improvement can be seen in Figure 4. There was a
concerning issue, however, where the model was unlikely
to predict the Northeast United States and also consistently
predicted the Atlantic Ocean when there were no training
points located in the region. Our next step in methodology
was to speculate why this was the case and to fix this dis-
crepancy.

Figure 4. The output of experiment and methodology in 3.2. As
can be seen, the model is still somewhat linear but definitely an
improvement compared to Figure 3.

3.3. Experiment 3

After performing the above experiments and noticing
that there were significant predictions within the Atlantic
Ocean, we decided to modify the pre-trained model itself.
The last few convolutional layers within ResNet-50 were
what we decided to target, as these layers were responsible
for the object detection. We deduced that since ResNet-50
was designed for object detection, it was likely picking up
on cars and buildings within the data, not the geographic
location itself. As a result, we decided to stray away from
freezing all layers of ResNet-50 and instead unfreeze the
last convolutional layer.

In addition to unfreezing the last convolutional layer, we
decided it would be best to tune additional hyperparameters.
For learning rate, we chose 10e-5 with a batch size of 50
and a regulizer/weight decay of 10e-5. We decided to keep

the loss function as Mean Squared Error loss and increased
the epoch size from 3 to 7. After making these changes we
saw significant improvements with a smoother loss and less
linear predictions trailing into the Atlantic Ocean. We were
still facing issues where we would never predict Florida,
however, this was a large step into meaningful predictions
for Geoguessr AI.

Figure 5. The training loss associated with Experiment 3.3. We
obtained a reliable, monotonically decreasing loss curve, indicat-
ing a more stable learning process unlike in experiment 3.2.

Figure 6. Predictions associated with experiment 3.3. There is less
predictions spontaneously scattered within the Atlantic Ocean.
However, we see the model skips predictions in Florida and also
overpredicts in Northern South Dakota (where we are missing
data).



4. Results
4.1. Final Model Section and Architecture

Our final model was the model from the section titled
Experiment 3 (section 3.3). It consisted of transfer learning
from ResNet-50, unfreezing the fifth and final convolutional
layer prior to the output, and adding a fully connected layer.
This fully connected layer had 1028 nodes as input from
ResNet-50 and 2 nodes as output, which were our latitude
and longitude predictions.

4.2. Training Statistics

The best Geoguessr AI model from experiment 3 had
consistent loss plots that monotonically decreased and con-
verged through Mean Squared Loss. In addition, we plotted
predictions through the entire final training process to see
examples of our performance you can see this in Figures 7
and 8.

4.3. Evaluation

We evaluated our final Geoguessr AI model and it per-
formed rather well on the evaluation set, which was the re-
maining untouched 20% of our set. We saw an even scatter
between our ground truth data and the model’s prediction.

In addition, our second evaluation tactic consisted of
shuffling our evaluation set and grabbing the first image and
label at the top of our dataset. We would feed the model the
input, request a prediction, and plot the ground truth and
prediction on the same map. We saw some astoundingly
close-to-accurate results! These are shown and defined in
detail within Figures 7 and 8.

Figure 7. Singular prediction associated with singular ground truth
in our evaluation set. As can be seen, model is very close at guess-
ing! For clarity, the green dot represents the ground truth while the
red dot represents model prediction.

Figure 8. Singular prediction associated with singular ground truth
in our evaluation set. As can be seen, model is very close at guess-
ing! The green dot represents the ground truth while the red dot
represents model prediction.

As we ran the single plotting across different shuffles of
our evaluation set, we saw that the model was extraordinar-
ily good at predicting latitude, with longitude giving some
variance. We suspect this is the case because latitude is fur-
ther associated with foliage and desert/seasonal variations
than is longitude. The model likely picks up on these re-
gional features and is able to accurately grasp proper coor-
dinates. In addition, careful shuffling of our evaluation and
intentional separation between the training and evaluation
sets guaranteed that our model was not memorizing noise
associated with the images but was rather learning proper
image representations.

5. Conclusion

In short, we spent many weeks with different methods
creating an effective model via supervised learning that
would be able to guess where an image came from when
given an image as input. While we saw significant improve-
ments in performance, we would have liked further time to
test new ideas. Some of these ideas include trying differ-
ent base models as a pre-trained base. We originally picked
ResNet-50 due to its strong performance on image classifi-
cation tasks and its relatively manageable computational de-
mands. However, we noticed many data points were taken
during different times of the day and seasons, leading our
model to pick up on causal differences. As a result, it would
have been beneficial to apply grayscale and other augmen-
tations to our image and feed that input to the pre-trained
model. This was not possible with ResNet-50 since the
model was pre-trained for the classification of color images.

The conclusion we drew from this project is that guess-



ing geographic locations can be a difficult task, especially
since most of our data comes from seasonally varying
sources and also since it comes from different times of day.
We want a rigorous model that can properly handle this
but since geographic locations can vary heavily, we would
need millions of more data points to do so. We have real-
ized how integral data is and the difficulties in creating cus-
tom losses that could accurately monitor the performance
of our model. We hope to forward this knowledge in future
machine-learning research projects, industrial research, and
capstone courses.

References
[1] GeeksforGeeks. (n.d.). Residual Networks (ResNet)

in Deep Learning. Retrieved from https://www.
geeksforgeeks.org/residual-networks-
resnet-deep-learning/

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. (2015). Deep Residual Learning for Im-
age Recognition. arXiv preprint arXiv:1512.03385. Re-
trieved from https://arxiv.org/pdf/1512.
03385

[3] T.T. Lemani and T.L. van Zyl. (2023). Comparing
Male Nyala and Male Kudu Classification using Trans-
fer Learning with ResNet-50 and VGG-16. arXiv
preprint arXiv:2311.05981. Retrieved from https:
//arxiv.org/pdf/2311.05981

[4] VISO AI. (n.d.). VGG – Very Deep Convo-
lutional Networks. Retrieved from https :
//viso.ai/deep- learning/vgg- very-
deep-convolutional-networks/

[5] Tobias Weyand, Ilya Kostrikov, and James Philbin.
(2016). PlaNet - Photo Geolocation with Convolutional
Neural Networks. Retrieved from https://arxiv.
org/pdf/1602.05314/

[6] James Hays and Alexei Efros. (n.d.). IM2GPS: estimat-
ing geographic information from a single image. Re-
trieved from http://graphics.cs.cmu.edu/
projects/im2gps/

[7] Srikumar Ramalingam, Sofien Bouaziz, Peter Sturm,
Matthew Brand, and others. (n.d.). SKYLINE2GPS:
Localization in Urban Canyons using Omni-Skylines.
Retrieved from https://ieeexplore.ieee.
org / stamp / stamp . jsp ? tp = &arnumber =
5649105

[8] scikit-learn. (n.d.). haversine distances. Retrieved
from https://scikit-learn.org/stable/
modules / generated / sklearn . metrics .
pairwise.haversine_distances.html

6. Appendix
6.1. Setup

1. Download the Repo via the Github link by using the
git clone method: Github

https://github.com/aethom00/Geoguessr442

2. Download the Checkpoints and the Image Data via the
download link and create a folder within the project
directory named Predictions new: Data

https://drive.google.com/drive/folders/1POZeCffw
Gw3xwal5pob0dSFtzUHK9-Gc?usp=sharing

3. Disclaimer*: You may not be able to run this code
unless you have access to a CUDA GPU

6.2. Overview of Options

First you will see a driver file named driver.py. This is
how you will operate our model. The driver features two
commands:

• - - train: Will allow you to train the model with a neces-
sary parameter (integer) which represents the number
of epochs you would like to train the model with.

• - - evaluate: Will allow you to evaluate the model with
the options:

– The number of images you’d like to evaluate (in-
teger)

– Whether you would like all the points to display
on different graphs/maps (boolean, True or False
inputs)

6.3. Executing the Code

Running any code below should output each estimation’s
Haversine distance (distance accounting for Earth’s curva-
ture) between the estimated point and the correct point in
the form...

H a v e r s i n e D i s t a n c e o f i t e r a t i o n i : n km

where i is the ith iteration and where n is the number
of kilometers between the estimated point and the correct
point cut off at the hundredths place (e.g. 10.96 km).

1. You may run a line such as this to train your model
with 7 epochs:

py thon3 d r i v e r . py −− t r a i n 7

Your result should be something like this which dis-
plays the green points (actual locations) vs the red
points (the model’s predictions).

https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/
https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/
https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/
https://arxiv.org/pdf/1512.03385
https://arxiv.org/pdf/1512.03385
https://arxiv.org/pdf/2311.05981
https://arxiv.org/pdf/2311.05981
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://arxiv.org/pdf/1602.05314/
https://arxiv.org/pdf/1602.05314/
http://graphics.cs.cmu.edu/projects/im2gps/
http://graphics.cs.cmu.edu/projects/im2gps/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5649105
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5649105
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5649105
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
https://github.com/aethom00/Geoguessr442
https://drive.google.com/drive/folders/1POZeCffwGw3xwal5pob0dSFtzUHK9-Gc?usp=sharing


Figure 9. An example of the train command line option

2. You may run a line such as this to generate a single
point estimation:

py thon3 d r i v e r . py −− e v a l u a t e 1 F a l s e

Figure 10. An example of the evaluate command line option


	. Introduction
	. Background
	. Model Considerations
	. Final Model Selection - Pretrain Task

	. Methodology
	. Experiment 1
	. Experiment 2
	. Experiment 3

	. Results
	. Final Model Section and Architecture
	. Training Statistics
	. Evaluation

	. Conclusion
	. Appendix
	. Setup
	. Overview of Options
	. Executing the Code


