
ENGR 151 Project 3

Tuesday October 11th 2022

This assignment is due Thursday October 27th 2022 at 11:59PM

1 Overview

Coding... it’s not rocket science! Actually, for this project, it is. We are going to calculate
the payload that can be carried by a rocket to a low Earth orbit (LEO), for example to put
a satellite into space. A low Earth orbit is 2000 km above the earth’s surface. A rocket
works by burning propellent that is ejected through a nozzle at the rear of the rocket to
push it along. This is known as the thrust. The thrust pushes against the force of gravity
and the air resistance as it pushes through the air. In such a case where we are including the
air resistance, finding a closed-form solution (i.e. a mathematical equation) even for one-
dimensional (1D) motion is generally challenging. When situations like this occur, engineers
often rely on numerical methods to get approximate results. In this project, you will solve
for the acceleration of the rocket numerically using finite difference methods.

1

2 Finite difference equations describing rocket motion

To solve the numerical equations describing the rocket motion we will use an Euler scheme
(which is often pretty useless as a numerical method due to it’s predilection for instability,
but simple and works here). The origin of these equations is given in the appendix at the
end of this document. You don’t need to derive these, they are just there for reference for
those who are interested in where they came from. The result is a set of iterations from an
initial value to find the velocity vn, height hn, mass Mn etc. for the rocket at each time step
labelled n.

3 Assignment

The assignment is to write a code to calculate the rocket trajectory using the finite different
equation and optimize the fuel load for a given payload mass, broken down into 4 subtasks.
For all problems, we are going to calculate and output to a precision of 3 significant figures.
∆t for all parts of this problem should be ∆t = 0.001 seconds. The following units should
be used for your code: Time in seconds, distance in kilometers, mass in tonnes (metric tons,
i.e. 1 t = 1000 kg), velocity in kilometers per second. Each task should be submitted as a
separate file, with four files total for submission to the autograder.

• Task 1: Calculate the maximum velocity the rocket can achieve with no gravity or air
resistance; solve

vn+1 = vn +
T

Mn

∆t ,

and

Mn+1 = Mn −
T∆t

ve
,

The initial velocity v0 = 0 and the initial mass M0 = Mtotal. You can test if your
code is working by verifying that the maximum change in velocity obeys the rocket
equation:

Mpayload = Mtotale
−

vfinal−vinitial
ve .

Note Mpayload is Mtotal −Mfuel and here e = 2.718 . . . is Euler’s number.

Choose sensible values for this test; Note for the numerical integration to work, T/Mn∆t
and T∆t/ve need to be small compared with vn and Mn respectively. For example, for
Saturn V rocket, T = 35 tonne · km/s2, ve = 4 km/s, Mtotal = 3000 tonnes, Mpayload

= 300 tonnes.

Your file must be named rocket_task1.cpp. It should read in from a file named
init.txt, which will be a file supplied by the autograder containing 4 numbers sep-
arated by end of line only, representing the input values T , ve, Mtotal and Mpayload

respectively. The code should execute returning 0 and print to stdout using cout

ONLY a single number, which should be the value of the final speed v. Set the pre-
cision of cout by using the statement cout.precision(3);, which will format the

2

output to contain three significant figures. Note that any trailing zeros after the dec-
imal point will not be displayed, e.g. 4894.498749847 will display as “4890”, but 1.20
will display as “1.2”.

• Task 2: Add gravity and calculate the maximum distance from Earth the rocket can
achieve. The new terms to add are shown in blue:

vn+1 = vn +∆t

(
T

Mn

− gn

)
,

Mn+1 = Mn −
T∆t

ve
,

hn+1 = hn + vn∆t ,

where

gn =
3.962× 105

(hn + rEarth)2
,

and rEarth = 6356 km. Note 3.962× 105 ≡ 396200 and can be expressed as a floating
point number in C++ as 3.962e5, where here e5 means “times 10 to the 5”.

Since gravity falls off in strength with distance, if the speed of the rocket gets sufficiently
high, gravity can never bring it to rest, and therefore the rocket can keep going to
infinity. This is known as the escape velocity vescape =

√
2g × (h+ rEarth). Obviously,

you don’t want this to happen as this will result in an infinite loop. Therefore, be
sure to add a condition in your code to detect if the velocity exceeds vescape. Some test
values for this task are given in table 1.

Table 1: Test values for tasks 2 and 3.

Test T [t-km s−2] ve [km s−1] Mtotal [t] Mpayload [t] hmax [km](Task 2) hmax [km] (Task 3)
1 35 4 3000 300 3950 3920
2 35 4 3000 250 5430 5390
3 30 4.5 2000 200 8440 8330
4 30 4.5 2000 100 ∞ ∞

Your file must be named rocket_task2.cpp. It should read in from a file named
init.txt containing 4 numbers only as in Task 1. The code should execute and if
successful, the code should return 0, and print ONLY a single number to stdout using
cout, which should be the value of the final height h. Set the precision of cout by
using the statement cout.precision(3);. If the escape velocity is reached, the code
should instead print to stdout “Escape velocity reached” and return 1.

3

• Task 3: Add air resistance to the model. (The new terms to add are shown in blue)

vn+1 = vn +∆t

(
T

Mn

− gn−
1

2Mn

ρnCDAv
2
n

)
,

Mn+1 = Mn −
T∆t

ve
,

hn+1 = hn + vn∆t ,

where

gn =
3.962× 105

(hn + rEarth)2

and

ρn = 1.225× 106 exp

(
−hn

9

)
.

Calculate the maximum distance from Earth the rocket can achieve. You can assume
that the dimensionless coefficient CD = 0.500 and the cross sectional area A is circular
with diameter 6.6 × 10−3 km for this rocket. Some test values for this task are given
in table 1.

Your file must be named rocket_task3.cpp. It should read in from a file named
init.txt containing 4 numbers only as in Task 1. The code should execute and, if
successful, should return 0 and print ONLY a single number, which should be the value
of the final height h, to stdout using cout. Set the precision of cout by using the
statement cout.precision(3);. If the escape velocity is reached, the code should
instead print to stdout “Escape velocity reached” and return 1.

• Task 4: Find the optimal fuel mass for given thrust and payload to reach a height
of 2000 km. The optimum is when the rocket is brought to rest at a height of 2000
km at the point when the fuel mass tends to zero. Use any technique to find this
optimum to 0.2% accuracy (i.e. the fuel mass that just gets the rocket to 2000 ± 5
km). However, the calculation must complete within 10 seconds to pass the test. You
can assume again that the dimensionless coefficient CD = 0.500 and the cross sectional
area A is circular with diameter of 6.6× 10−3 km.

You may search from a minimum fuel mass of zero up to the maximum fuel mass
allowed by the equation for the velocity update:

vn+1 = vn +∆t

(
T

Mn

− gn−
1

2Mn

ρnCDAv
2
n

)
,

for which vn+1 > vn on the first step or the rocket won’t take off.

Your file must be named rocket_task4.cpp. It should read in from a file named
init_opt.txt containing 3 numbers only, representing the input values T , ve and

4

Mpayload. The code should execute and, if successful, it should return 0 and print ONLY
a single number, which should be the value of the optimal fuel mass Mfuel, to stdout

using cout. Set the precision of cout by using the statement cout.precision(3);.
On error, if the total mass is too heavy, it should instead return 1 and should print to
stdout “Rocket too heavy”. (You should still test for reaching escape velocity within
your search, to avoid an infinite loop, but it should not terminate the code).

4 Grading

The project should be submitted to project 3 on autograder.io. This project will be graded
in two parts. First, the autograder will evaluate your submission and provide a maximum
score of 100 points. Second, one of our graders will evaluate your submission for style and
commenting, and will subtract 0-10 points from the score that autograder evaluated. The
following is the breakdown for each part:

pts Description
25 Task 1: Velocity correctly calculated
25 Task 2: Height correctly calculated
25 Task 3: Height correctly calculated
25 Task 4: Mass correctly calculated

pts Description (pts will be subtracted if item is missing or insufficient)
2 Each file has name/section number/submitted date included in a header comment
2 Comments are used appropriately (e.g. major steps explained)
2 Indenting and whitespace are appropriate (including functions properly formatted)
2 Variables are given descriptive names
2 Overall program structure (e.g, using functions instead of repeated code blocks)

5 Appendix: Physical Equations describing Rocket Mo-

tion

We will approximate this situation using a very simple one-dimensional (1D) model; in other
words, considering the rocket to be confined to travelling directly upwards. In reality a
rocket would have to manoeuvre into an LEO, it may have multiple stages and all sorts of
other complications that we will ignore for simplicity. The rocket motion is described by the
force balance:

Frocket = T −Mrocket × g −Rair ,

where Frocket is the resultant force on the rocket, T is the thrust generated by burning the
propellant, Mrocket × g is the gravitational force (weight) on the rocket with mass Mrocket,
and Rair is the air resistance. We will consider T to be a constant, i.e. the rocket generates
constant thrust.

There are several complications to consider. The first is that due to the fact the rocket
is traveling far from the Earth’s surface so we can’t use g = 9.807 ms−2, but instead need to

5

use

g =
GME

r2rocket
=

3.962× 105

{(hrocket + rEarth) [km])}2
km s−2 ,

where hrocket is the height of the rocket in kilometers as measured from the Earth’s surface,
which is at radius rEarth = 6356 km. (G is the gravitational constant and ME is the Earth’s
mass. Note this expression is only accurate to four significant figures.)

We can calculate the height of the rocket by integrating the equation

dhrocket

dt
= vrocket ,

where v is the rocket velocity. We can calculate the velocity of the rocket using

dvrocket
dt

=
Frocket

Mrocket

.

The next complication comes from the fact that the rocket thrust is generated by burning
fuel, so the rocket mass changes as a function of time. Hence we need to take into account
the “rate of change of mass”, i.e. how much fuel is expelled out of the back of the rocket per
second. The rocket thrust can be defined as

T = −ve
dMrocket

dt
,

where ve is the exhaust velocity - i.e. how fast the propellant is ejected from the nozzle.
We will assume that this quantity is a constant, so the rate of mass loss is also a constant.
Figure 1 is a cartoon (courtesy of Wikipedia) which illustrates how the mass loss leads to
thrust.

Figure 1: Cartoon (courtesy of Wikipedia) illustrating how the ejection of a small mass of
propellant leads to thrust for a rocket.

Finally, we may add air resistance, which depends on the rocket velocity, through the
expression Rair = 1

2
ρCDAv

2
rocket, with A the cross sectional area, ρ the air mass density

and CD the drag coefficient. In general the drag coefficient CD depends on the shape and
dimensions of the rocket and has some speed dependence at low velocity, but we will assume
it is a constant.

Lastly, of course the air density varies with altitude; the higher you are, the thinner the
air is. We will use a very simple model to describe the air density as a function of height:

ρ = 1.225× 106 exp

(
−hrocket [km]

9.000

)
tonnes km−3 .

6

Hence, all together we solve:

d

dt
vrocket(t) =

T

Mrocket(t)
− g(t)− 1

2Mrocket(t)
ρ(hrocket(t))CDAvrocket(t)

2 ,

combined with
d

dt
hrocket(t) = vrocket(t) ,

and
d

dt
Mrocket(t) = −T

ve
,

where (t) next to a quantity indicates that it is a function of time. We can approximate the
derivatives by finite difference equations, e.g. using:

dv

dt
≈ v(t+∆t)− v(t)

∆t
.

∆t is a constant finite sized step in time, so that after n time steps the time is t = n∆t.
Since v(t+∆t) = v(n∆t+∆t) = v([n+1]∆t), we make use of the notation v(t+∆t) ≡ vn+1.
v(t) ≡ vn etc. Using the Euler scheme, the equations of motion in finite difference form
(dropping the rocket suffix for clarity) become:

vn+1 − vn
∆t

=
T

Mn

− gn −
1

2Mn

ρnCDAv
2
n ,

hn+1 − hn

∆t
= vn ,

and
Mn+1 −Mn

∆t
= −T

ve
,

with

gn =
3.962× 105

(hn + rEarth)2

and

ρn = 1.225 exp

(
−hn

9

)
.

or, after rearranging:

vn+1 = vn+∆t

(
T

Mn

− gn −
1

2Mn

ρnCDAv
2
n

)
,

hn+1 = hn + vn∆t ,

and

Mn+1 = Mn −
T∆t

ve
,

7

	Overview
	Finite difference equations describing rocket motion
	Assignment
	Grading
	Appendix: Physical Equations describing Rocket Motion

